Highlights of Ophthalmology

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Related articles

VOLUME 50 , ISSUE 2ESP ( April, 2022 ) > List of Articles

Cirugía de Catarata y de Lentes Fáquicas sin Sustancias Viscoelásticas

Dr. Germán R. Bianchi

Keywords : Lentes intraoculares, sustancias viscoelásticas, faquia, afaquia, catarata, técnica quirúrgica, complicaciones, endotelio corneal, presión intraocular, cirugía refractiva

Citation Information : Bianchi DG. Cirugía de Catarata y de Lentes Fáquicas sin Sustancias Viscoelásticas. 2022; 50 (2ESP):4-15.

DOI: 10.5005/hos-10101-50201

Published Online: 04-04-2022

Copyright Statement:  Copyright © 2022; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Objetivo: Describir un método para realizar cirugías de catarata y de lentes fáquicas de cámara posterior sin la utilización de sustancias viscoelásticas. Antecedentes: Las sustancias viscoelásticas se utilizan para obtener mayor seguridad durante las maniobras intraoculares. Se deben inyectar y posteriormente extraer, ya que, si no se extraen, pueden generar hipertensión ocular e incluso síndromes inflamatorios-tóxicos. Pero se pueden realizar cirugías tanto de catarata como de lentes fáquicas sin viscoelásticos de forma segura y eficaz, como el presente autor y otros ya lo han comprobado. Técnica: En cirugía de catarata, se realizan dos incisiones de “20 gauge (G)” con “V-lance” a nivel del limbo a las horas 10 y 2. Se introduce la cánula de irrigación de 21G (pieza de mano de irrigación de I/A bimanual), con 2 orificios laterales. Por la segunda incisión se introduce la pinza de micro-capsulorrexis de 23G. La botella de irrigación con solución salina balanceada (BSS, por sus siglas en inglés) se mantiene elevada (80 a 100 cm) y se realiza la capsulorrexis bajo circulación continua del BSS. Posteriormente se realiza la hidrodisección, colocando la misma cánula de irrigación bajo la capsulorrexis. Sin remover la cánula de irrigación, la incisión principal se ampliará y se realiza la facoemulsificación, aspiración y extracción de masas de la manera habitual. Se coloca la cánula de irrigación por la incisión de 20G y se inyectará la lente monopieza plegable por la incisión principal. En la técnica de cirugía de lentes fáquicas de cámara posterior, se realiza una primera incisión corneal a 45 grados con una V-lance 20G, se coloca en la cámara anterior una cánula de irrigación 21G de la irrigación/aspiración bi-manual, para trabajar en modo infusión/irrigación. Realizar una segunda incisión corneal de 2.8 mm localizada a los 130 grados. Manteniendo la cámara anterior con presión positiva con circulación de BSS, se procede a inyectar la lente fáquica en cámara anterior que se despliega suavemente y con la ayuda de la cánula de irrigación de la I/A se colocan las hápticas detrás del iris, en el sulcus. Conclusión: Se puede realizar la cirugía de catarata y de lentes fáquicas sin la utilización de sustancias viscoelásticas de forma segura y eficaz, siguiendo un método específico. Importancia Clínica: Difundir que existe una alternativa al uso de sustancias viscoelásticas para el implante de lentes intraoculares, con potenciales ventajas.


PDF Share
  1. Baum JP, Maurice DM, McCarey BE. The active and passive transport of water across the corneal endothelium. Exp Eye Res 1984; 39: 335-42.
  2. Bonanno JA. Identity and regulation of ion transport mechanisms in the corneal endothelium. Prog Retin Eye Res 2003; 22: 69-94.
  3. Leung BK, Bonanno JA, Radke CJ. Oxygen-deficient metabolism and corneal edema. Prog Retin Eye Res 2011; 30: 471-92.
  4. Siegfried CJ, Shui YB, Bai F, Beebe DC. Central corneal thickness correlates with oxygen levels in the human anterior chamber angle. Am J Ophthalmol 2015; 159: 457-62.
  5. De Vincentiis M. Further contributions to the study of the formation of the aqueous humour after paracentesis. J Physiol 1959; 146: 252-4.
  6. Mapstone R. Outflow changes in normal eyes after closed-angle glaucoma. Br J Ophthalmol 1977; 61: 637-40.
  7. Hayashi M, Yablonski ME, Boxrud C, Fong N, Berger C, Jovanovic LJ. Decreased formation of aqueous humour in insulin-dependent diabetic patients. Br J Ophthalmol 1989; 73: 621-3.
  8. Ho LC, Conner IP, Do CW et al. In vivo assessment of aqueous humor dynamics upon chronic ocular hypertension and hypotensive drug treatment using gadolinium-enhanced MRI. Invest Ophthalmol Vis Sci. 2014; 55: 3747-3757.
  9. Gerometta R, Escobar D, Candia OA. An hypothesis on pressure transmission from anterior chamber to optic nerve. Med Hypotheses 2011; 77: 827-83.
  10. Johnson M, McLaren JW, Overby DR. Unconventional aqueous humor outflow: a review. Exp Eye Res 2017; 158:94-111.
  11. Huang AS, Li M, Yang D, Wang H, Wang N, Weinreb RN. Aqueous angiography in living nonhuman primates shows segmental, pulsatile, and dynamic angiographic aqueous humor outflow. Ophthalmology 2017; 124: 793-803.
  12. Blumenthal M, Moisseiev J. Anterior chamber maintainer for extracapsular cataract extraction and intraocular lens implantation. J Cataract Refract Surg 1987; 13: 204-6.
  13. Holmén JB, Ekesten B, Lundgren B. Anterior chamber depth estimation by Scheimpflug photography. Acta Ophthalmol Scand 2001; 79: 576-9.
  14. Chakrabarti A, Nazm N. Posterior capsular rent: prevention and management. Indian J Ophthalmol 2017; 65: 1359-1369.
  15. Jeng BH, Huang D. Anterior chamber stability during bimanual irrigation and aspiration: theoretical and experimental analysis. J Cataract Refract Surg 2001; 27: 1670-8.
  16. Pape LG, Balazs EA. The use of sodium hyaluronate (Healon) in human anterior segment surgery. Ophthalmology 1980; 87: 699-705.
  17. Hoopes PC. Sodium hyaluronate (Healon) in anterior segment surgery: a review and a new use in extracapsular surgery. J Am Intraocul Implant Soc 1982; 8: 148-54.
  18. Liesegang TJ. Viscoelastic substances in ophthalmology. Surv Ophthalmol 1990; 34: 268-93.
  19. Strobel J. Comparison of space-maintaining capabilities of Healon and Healon GV during phacoemulsification. J Cataract Refract Surg 1997; 23: 1081-4.
  20. Van den Bruel A, Gailly J, Devriese S, Welton NJ, Shortt AJ, Vrijens F. The protective effect of ophthalmic viscoelastic devices on endothelial cell loss during cataract surgery: a meta-analysis using mixed treatment comparisons. Br J Ophthalmol 2011; 95: 5-10.
  21. Bourne WM, Liesegang TJ, Waller RR, Ilstrup DM. The effect of sodium hyaluronate on endothelial cell damage during extracapsular cataract extraction and posterior chamber lens implantation. Am J Ophthalmol 1984; 98: 759-62.
  22. Sim BW, Amjadi S, Singh R, Bhardwaj G, Dubey R, Francis IC. Assessment of adequate removal of ophthalmic viscoelastic device with irrigation/aspiration by quantifying intraocular lens ‘Judders’. Clin Exp Ophthalmol 2013; 41: 450-4.
  23. Lee HY, Choy YJ, Park JS. Comparison of OVD and BSS for maintaining the anterior chamber during IOL implantation. Korean J Ophthalmol 2011; 25: 15-21.
  24. Sihota R, Saxena R, Agarwal HC. Intravitreal sodium hyaluronate and secondary glaucoma after complicated phacoemulsification. J Cataract Refract Surg 2003; 29: 1226-7.
  25. Chang DF, Packard RB. Posterior assisted levitation for nucleus retrieval using Viscoat after posterior capsule rupture. J Cataract Refract Surg 29: 1860-5.
  26. Bissen-Miyajima H. In vitro behavior of ophthalmic viscosurgical devices during phacoemulsification. J Cataract Refract Surg 2006; 32: 1026-31.
  27. Sholohov G, Levartovsky S. Retained ophthalmic viscosurgical device material in the capsular bag 6 months after phacoemulsification. J Cataract Refract Surg 2005; 31: 627-9.
  28. Altıntaş AK, Ciritoğlu MY, BeyazyıldıZ Ö, Can ÇÜ, Polat S. Toxic anterior segment syndrome outbreak after cataract surgery triggered by viscoelastic substance. Middle East Afr J Ophthalmol 2017; 24: 43-47.
  29. Schulze SD, Bertelmann T, Manojlovic I, Bodanowitz S, Irle S, Sekundo W. Changes in corneal endothelium cell characteristics after cataract surgery with and without use of viscoelastic substances during intraocular lens implantation. Clin Ophthalmol 2015; 9: 2073-80.
  30. Oksuz H, Daglioglu MC, Coskun M et al. Vacuum-assisted continuous circular capsulorhexis using bimanual irrigation and aspiration system of phaco machine in immature cataract. J Ophthalmol 2013; 2013:921646.
  31. Wright M, Chawla H, Adams A. Results of small incision extracapsular cataract surgery using the anterior chamber maintainer without viscoelastic. Br J Ophthalmol 1999; 83: 71-5.
  32. Sallet G. Viscoless microincision cataract surgery. Clin Ophthalmol 2008; 2: 717-21.
  33. Galan A. Phaco-emulsification without the use of visco-elastic devices. Ocular Surg News Europe/Pacific Ed, April 2005.
  34. Bianchi GR. Phacoemulsification cataract surgery without viscoelastic substance. JOJ Ophthalmol 2017; 4: 555646. Disponible en: https://juniperpublishers.com/jojo/JOJO.MS.ID.555646.php
  35. Bianchi GR. Phacoemulsification cataract surgery without viscoelastic substance: Bianchi's method, difficulties in cataract surgery. London: IntechOpen, 2018. Disponible en: https://mts.intechopen.com/articles/show/title/phacoemulsification-cataract-surgery-without-viscoelastic-substance-bianchi-s-method
  36. Bianchi GR. Faco sin visco y sin complicaciones. Oftalmol Clin Exp. 2018; 11: 103-113.
  37. Bianchi GR. Corneal Endothelial Health after Phacoemulsification Cataract Surgery without Viscoelastic Substance. J Curr Ophthalmol. 2021;33:75-81. doi:10.4103/JOCO.JOCO_185_20
  38. Bianchi GR. Initial Results From a New Model of Posterior Chamber Implantable Phakic Contact Lens: IPCL V2.0. Med Hypothesis Discov Innov Ophthalmol. 2019;8:57-63.
  39. Bianchi GR. PRESBYOPIA MANAGEMENT WITH DIFFRACTIVE PHAKIC POSTERIOR CHAMBER IOL. ŘEŠENÍ PRESBYOPIE DIFRAKČNÍ ZADNĚKOMOROVOU FAKICKOU NITROOČNÍ ČOČKOU. Cesk Slov Oftalmol. 2020;76:211-219. doi:10.31348/2020/30
  40. Tobaiqy M, Aalam W, Banji D, Al Haleem ENA. Intraoperative Floppy Iris Syndrome Induced by Tamsulosin: The Risk and Preventive Strategies. Middle East Afr J Ophthalmol. 2021;28:51-56.. doi:10.4103/meajo.MEAJO_561_20
  41. Balazs EA, Freeman MI, Klöti R, Meyer-Schwickerath G, Regnault F, Sweeney DB. Hyaluronic acid and replacement of vitreous and aqueous humor. Mod Probl Ophthalmol. 1972;10:3–21.
  42. Miller D, O'Connor P, Williams J. Use of Na-hyaluronate during intraocular lens implantation in rabbits. Ophthalmic Surg. 1977;8:58–61.
  43. Pape LG, Balazs EA. The use of sodium hyaluronate (Healon) in human anterior segment surgery. Ophthalmology. 1980;87:699–705.
  44. Arshinoff SA, Wong E. Understanding, retaining, and removing dispersive and pseudodispersive ophthalmic viscosurgical devices. J Cataract Refract Surg. 2003;29:2318–23.
  45. Malvankar-Mehta MS, Fu A, Subramanian Y, Hutnik C. Impact of Ophthalmic Viscosurgical Devices in Cataract Surgery. J Ophthalmol. 2020;2020:7801093. Published 2020 Oct 20. doi:10.1155/2020/7801093
  46. Perrone DM. Argentinian flag sign. Instructional video presented to the 2000 American Society of Cataract and Refractive Surgery and the European Society of Cataract and Refractive Surgeons. https://eyewiki.aao.org/Argentinian_Flag_Sign
  47. Bianchi GR. Spectacle Independence After Cataract Surgery: A Prospective Study With a Multifocal Intraocular Lens. Med Hypothesis Discov Innov Ophthalmol. 2020;9:38-46.
  48. Kugu S, Erdogan G, Sahin Sevim M, Ozerturk Y. A clinical comparison of safety and efficacy in phacoemulsification with versus without ophthalmic viscoelastic device. Semin Ophthalmol. 2015;30:96–100.
  49. Schargus M, Suckert N, Schultz T, Kakkassery V, Dick HB. Femtosecond laser-assisted cataract surgery without OVD: A prospective intraindividual comparison. J Refract Surg. 2015;31:146–52.
  50. Storr-Paulsen A, Nørregaard JC, Farik G, Tårnhøj J. The influence of viscoelastic substances on the corneal endothelial cell population during cataract surgery: A prospective study of cohesive and dispersive viscoelastics. Acta Ophthalmol Scand. 2007;85:183–7.
  51. Martínez-Plaza E, López-Miguel A, Holgueras A, Barraquer RI, Alió JL, Maldonado MJ. Phakic intraocular lenses: Recent advances and innovations. Arch Soc Esp Oftalmol (Engl Ed). 2020;95:178-187. English, Spanish. doi: 10.1016/j.oftal.2020.02.001.
  52. Montés-Micó R, Ruiz-Mesa R, Rodríguez-Prats JL, Tañá-Rivero P. Posterior-chamber phakic implantable collamer lenses with a central port: a review. Acta Ophthalmol. 2021;99(3):e288-e301. doi: 10.1111/aos.14599.
  53. Marcus MW, de Vries MM, Junoy Montolio FG, Jansonius NM. Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. Ophthalmology. 2011;118:1989-1994.e2. doi: 10.1016/j.ophtha.2011.03.012.
  54. Foo LL, Lanca C, Wong CW, et al. Cost of Myopia Correction: A Systematic Review. Front Med (Lausanne). 2021;8:718724. doi:10.3389/fmed.2021.718724
  55. Budo C, Goffinet G, Bellotto D, Petroll WM. Effect of ophthalmic viscosurgical devices on lens epithelial cells: a morphological study. J Cataract Refract Surg. 2003;29(12):2411-2418. doi:10.1016/s0886-3350(03)00410-3
  56. Pan AP, Wen LJ, Shao X, et al. A novel ophthalmic viscosurgical device-free phakic intraocular lens implantation makes myopic surgery safer. Eye Vis (Lond). 2020;7:18. doi:10.1186/s40662-020-00185-4
  57. Peng M, Tang Q, Zhao L, Khan MA, Lin D. Safety of implantable Collamer lens implantation without ophthalmic viscosurgical device: A retrospective cohort study. Medicine (Baltimore). 2020;99(24):e20691. doi:10.1097/MD.0000000000020691
  58. Kim BK, Chung YT. Comparison of clinical outcomes of implantable collamer lens implantation with and without use of an ophthalmic viscosurgical device. J Cataract Refract Surg. 2021;47(2):198-203. doi:10.1097/j.jcrs.0000000000000417
  59. Qin Q, Bao L, He Z, et al. Pure ICL Implantation: A Novel Ophthalmic Viscosurgical Device-Free Method. J Ophthalmol. 2021;2021:7363267. doi:10.1155/2021/7363267
  60. Zhang Z, Niu L, Zhao J, et al. Safety of EVO ICL Implantation With an Ophthalmic Viscosurgical Device-Free Technique in the Early 24 h After Surgery. Front Med (Lausanne). 2021;8:764653. doi:10.3389/fmed.2021.764653
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.