Highlights of Ophthalmology

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 48 , ISSUE 4ENG ( August, 2020 ) > List of Articles


Multimodal Imaging in Refractive Surgery

Louise Pellegrino Gomes Esporcatte, Marcella Q. Salomão, Nelson Batista Sena Jr., Jorge Haddad, Daniel G. Dawson, Fernando Faria-Correia

Citation Information : Esporcatte LP, Salomão MQ, Sena Jr. NB, Haddad J, Dawson DG, Faria-Correia F. Multimodal Imaging in Refractive Surgery. 2020; 48 (4ENG):4-24.

DOI: 10.5005/hooe-48-4-4

Published Online: 21-12-2020

Copyright Statement:  Copyright © 2020; Jaypee Brothers Medical Publishers (P) Ltd.


Refractive surgery boosted extensive development, which led to a genuine revolution in imaging technologies. The concept of multimodal refractive imaging is related to the application of different techniques to gather information about the patient's condition with the ultimate goal of enhancing both the safety and efficiency of refractive procedures. The multimodal approach involves from digital biomicroscopy, tear film and ocular surface evaluation, up to computerized Placido-disk corneal topography, Scheimpflug 3-D tomography, segmental tomography with layered epithelial thickness using OCT (optical coherence tomography) and very high-frequency ultrasound (VHF-US). In addition, corneal biomechanical assessment, ocular wavefront, axial length measurements, and confocal/specular corneal microscopy are also considered. In this article, we prospectively review such approaches with the most significant clinical applications in refractive surgery.

PDF Share
  1. Ambrósio R, Randleman JB. Screening for ectasia risk: what are we screening for and how should we screen for it? Journal of Refractive Surgery 2013;29:230-2.
  2. Salomão M, Hoffling-Lima AL, Lopes B, et al. Recent developments in keratoconus diagnosis. Expert Review of Ophthalmology 2018;13:329-41.
  3. Ambrosio R, Jr., Correia FF, Lopes B, et al. Corneal Biomechanics in Ectatic Diseases: Refractive Surgery Implications. The open ophthalmology journal 2017;11:176-93.
  4. Maeda N, Klyce SD, Smolek MK, Thompson HW. Automated keratoconus screening with corneal topography analysis. Investigative ophthalmology & visual science 1994;35:2749-57.
  5. Maguire LJ, Bourne WM. Corneal topography of early keratoconus. American journal of ophthalmology 1989;108:107-12.
  6. Ambrósio Jr R, Alonso RS, Luz A, Velarde LGC. Corneal-thickness spatial profile and corneal-volume distribution: tomographic indices to detect keratoconus. Journal of Cataract & Refractive Surgery 2006;32:1851-9.
  7. Ambrósio R, Caiado ALC, Guerra FP, et al. Novel pachymetric parameters based on corneal tomography for diagnosing keratoconus. Journal of refractive surgery 2011;27:753-8.
  8. Lopes BT, Ramos IC, Dawson DG, Belin MW, Ambrosio R, Jr. Detection of ectatic corneal diseases based on pentacam. Z Med Phys 2016;26:136-42.
  9. Ambrosio R, Jr., Valbon BF, Faria-Correia F, Ramos I, Luz A. Scheimpflug imaging for laser refractive surgery. Current opinion in ophthalmology 2013;24:310-20.
  10. Smadja D, Touboul D, Cohen A, et al. Detection of subclinical keratoconus using an automated decision tree classification. Am J Ophthalmol 2013;156:237-46 e1.
  11. Saad A, Gatinel D. Topographic and tomographic properties of forme fruste keratoconus corneas. Investigative ophthalmology & visual science 2010;51:5546-55.
  12. Hwang ES, Perez-Straziota CE, Kim SW, Santhiago MR, Randleman JB. Distinguishing Highly Asymmetric Keratoconus Eyes Using Combined Scheimpflug and Spectral-Domain OCT Analysis. Ophthalmology 2018;125:1862-71.
  13. Luz A, Lopes B, Hallahan KM, et al. Enhanced Combined Tomography and Biomechanics Data for Distinguishing Forme Fruste Keratoconus. Journal of refractive surgery (Thorofare, NJ : 1995) 2016;32:479-94.
  14. Golan O, Piccinini AL, Hwang ES, et al. Distinguishing Highly Asymmetric Keratoconus Eyes Using Dual Scheimpflug/Placido Analysis. Am J Ophthalmol 2019.
  15. Ambrosio Jr R, Belin M. Enhanced screening for ectasia risk prior to laser laser vision correction. INTERNATIONAL JOURNAL OF KERATOCONUS AND ECTATIC CORNEAL DISEASES 2017;6:23-33.
  16. Ambrósio Junior R, Caldas DL, Silva RSd, Pimentel LN, Valbon BdF. Impacto da análise do “wavefront” na refratometria de pacientes com ceratocone. Revista Brasileira de Oftalmologia 2010;69:294-300.
  17. Silverman RH, Urs R, RoyChoudhury A, Archer TJ, Gobbe M, Reinstein DZ. Combined tomography and epithelial thickness mapping for diagnosis of keratoconus. Eur J Ophthalmol 2017;27:129-34.
  18. Reinstein DZ, Archer TJ, Urs R, Gobbe M, RoyChoudhury A, Silverman RH. Detection of Keratoconus in Clinically and Algorithmically Topographically Normal Fellow Eyes Using Epithelial Thickness Analysis. Journal of refractive surgery (Thorofare, NJ : 1995) 2015;31:736-44.
  19. Silverman RH, Urs R, Roychoudhury A, Archer TJ, Gobbe M, Reinstein DZ. Epithelial remodeling as basis for machine-based identification of keratoconus. Invest Ophthalmol Vis Sci 2014;55:1580-7.
  20. Reinstein DZ, Archer TJ, Gobbe M. Corneal epithelial thickness profile in the diagnosis of keratoconus. J Refract Surg 2009;25:604-10.
  21. Li Y, Tan O, Brass R, Weiss JL, Huang D. Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes. Ophthalmology 2012;119:2425-33.
  22. Qin B, Chen S, Brass R, et al. Keratoconus diagnosis with optical coherence tomography-based pachymetric scoring system. J Cataract Refract Surg 2013;39:1864-71.
  23. Schallhorn JM, Tang M, Li Y, Louie DJ, Chamberlain W, Huang D. Distinguishing between contact lens warpage and ectasia: Usefulness of optical coherence tomography epithelial thickness mapping. J Cataract Refract Surg 2017;43:60-6.
  24. Belin MW, Khachikian SS, Salomão M, Ambrósio Jr R. Keratoconus and ectasia detection based on elevation dat with the Oculus Pentacam®. In: Kiliç A, Roberts CJ, eds. Corneal Topography from Theory to Practice. Netherlands: Kugler Publications; 2013:167.
  25. Luz A, Faria-Correia F, Salomão MQ, Lopes BT, Ambrósio Jr R. Corneal biomechanics: Where are we? Journal of current ophthalmology 2016;28:97.
  26. Roberts CJ, Dupps WJ, Jr. Biomechanics of corneal ectasia and biomechanical treatments. Journal of cataract and refractive surgery 2014;40:991-8.
  27. Ma J, Wang Y, Wei P, Jhanji V. Biomechanics and structure of the cornea: implications and association with corneal disorders. Survey of ophthalmology 2018;63:851-61.
  28. Salomão MQ, Hofling-Lima AL, Lopes BT, et al. Role of the corneal epithelium measurements in keratorefractive surgery. Current opinion in ophthalmology 2017;28:326-36.
  29. Trattler WB, Majmudar PA, Donnenfeld ED, McDonald MB, Stonecipher KG, Goldberg DF. The Prospective Health Assessment of Cataract Patients’ Ocular Surface (PHACO) study: the effect of dry eye. Clin Ophthalmol 2017;11:1423-30.
  30. Wilson SE, Ambrosio R. Computerized corneal topography and its importance to wavefront technology. Cornea 2001;20:441-54.
  31. Rabinowitz YS, McDonnell PJ. Computer-assisted corneal topography in keratoconus. Journal of Refractive Surgery 1989;5:400-8.
  32. Ambrosio R, Jr., Klyce SD, Wilson SE. Corneal topographic and pachymetric screening of keratorefractive patients. Journal of refractive surgery (Thorofare, NJ : 1995) 2003;19:24-9.
  33. Klein SR, Epstein RJ, Randleman JB, Stulting RD. Corneal ectasia after laser in situ keratomileusis in patients without apparent preoperative risk factors. Cornea 2006;25:388-403.
  34. Ambrósio R, Dawson DG, Salomão M, Guerra FP, Caiado ALC, Belin MW. Corneal ectasia after LASIK despite low preoperative risk: tomographic and biomechanical findings in the unoperated, stable, fellow eye. Journal of refractive surgery 2010;26:906-11.
  35. Malecaze F, Coullet J, Calvas P, Fournié P, Arné J-L, Brodaty C. Corneal ectasia after photorefractive keratectomy for low myopia. Ophthalmology 2006;113:742-6.
  36. Reinstein DZ, Archer TJ, Gobbe M. Stability of LASIK in topographically suspect keratoconus confirmed non-keratoconic by Artemis VHF digital ultrasound epithelial thickness mapping: 1-year follow-up. Journal of Refractive Surgery 2009;25:569-77.
  37. Arbelaez MC, Versaci F, Vestri G, Barboni P, Savini G. Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data. Ophthalmology 2012;119:2231-8.
  38. Belin MW, Ambrosio R. Scheimpflug imaging for keratoconus and ectatic disease. Indian J Ophthalmol 2013;61:401-6.
  39. Chan C, Ang M, Saad A, et al. Validation of an Objective Scoring System for Forme Fruste Keratoconus Detection and Post-LASIK Ectasia Risk Assessment in Asian Eyes. Cornea 2015;34:996-1004.
  40. Saad A, Gatinel D. Validation of a new scoring system for the detection of early forme of keratoconus. Age 2012;37:37-8.
  41. Chan C, Saad A, Randleman JB, et al. Analysis of cases and accuracy of 3 risk scoring systems in predicting ectasia after laser in situ keratomileusis. J Cataract Refract Surg 2018;44:979-92.
  42. Demir S, Sönmez B, Yeter V, Ortak H. Comparison of normal and keratoconic corneas by Galilei Dual-Scheimpflug Analyzer. Contact Lens and Anterior Eye 2013;36:219-25.
  43. Smadja D, Touboul D, Cohen A, et al. Detection of subclinical keratoconus using an automated decision tree classification. American journal of ophthalmology 2013;156:237-46. e1.
  44. Belin MW, Khachikian SS. An introduction to understanding elevation-based topography: how elevation data are displayed–a review. Clinical & experimental ophthalmology 2009;37:14-29.
  45. Ambrósio Jr R, Nogueira LP, Caldas DL, et al. Evaluation of corneal shape and biomechanics before LASIK. International ophthalmology clinics 2011;51:11-38.
  46. Lopes BT, Ramos IC, Dawson DG, Belin MW, Ambrósio Jr R. Detection of ectatic corneal diseases based on pentacam. Zeitschrift für Medizinische Physik 2016;26:136-42.
  47. Lopes BT, Ramos IC, Salomao MQ, et al. Enhanced Tomographic Assessment to Detect Corneal Ectasia Based on Artificial Intelligence. American journal of ophthalmology 2018;195:223-32.
  48. Ambrósio Jr R, Ramos I, Lopes B, et al. Assessing ectasia susceptibility prior to LASIK: the role of age and residual stromal bed (RSB) in conjunction to Belin-Ambrósio deviation index (BAD-D). Revista Brasileira de Oftalmologia 2014;73:75-80.
  49. Ambrosio R, Jr., Guerra FP. Advanced Corneal Imaging for Fuchs Endothelial Corneal Dystrophy. Ophthalmology 2019;126:205-6.
  50. Valbon BdF, Santos RT, Ramos I, Canedo AL, Nogueira L, Ambrósio Jr R. Simplifying ectasia screening with corneal and anterior segment tomography. Revista Brasileira de Oftalmologia 2013;72:54-8.
  51. Alonso RS, Ambrosio Junior R, Paranhos Junior A, Sakata LM, Ventura MP. Glaucoma anterior chamber morphometry based on optical Scheimpflug images. Arq Bras Oftalmol 2010;73:497-500.
  52. Sel S, Stange J, Kaiser D, Kiraly L. Repeatability and agreement of Scheimpflug-based and swept-source optical biometry measurements. Contact lens & anterior eye : the journal of the British Contact Lens Association 2017;40:318-22.
  53. Shajari M, Cremonese C, Petermann K, Singh P, Muller M, Kohnen T. Comparison of Axial Length, Corneal Curvature, and Anterior Chamber Depth Measurements of 2 Recently Introduced Devices to a Known Biometer. Am J Ophthalmol 2017;178:58-64.
  54. Reinstein DZ, Silverman RH, Rondeau MJ, Coleman DJ. Epithelial and corneal thickness measurements by high-frequency ultrasound digital signal processing. Ophthalmology 1994;101:140-6.
  55. Reinstein DZ, Gobbe M, Archer TJ, Silverman RH, Coleman DJ. Epithelial, stromal, and total corneal thickness in keratoconus: three-dimensional display with artemis very-high frequency digital ultrasound. J Refract Surg 2010;26:259-71.
  56. Li Y, Chamberlain W, Tan O, Brass R, Weiss JL, Huang D. Subclinical keratoconus detection by pattern analysis of corneal and epithelial thickness maps with optical coherence tomography. Journal of cataract and refractive surgery 2016;42:284-95.
  57. Pahuja N, Shroff R, Pahanpate P, et al. Application of high resolution OCT to evaluate irregularity of Bowman's layer in asymmetric keratoconus. Journal of biophotonics 2017;10:701-7.
  58. Ambrosio R, Jr., Wilson S. LASIK vs LASEK vs PRK: advantages and indications. Seminars in ophthalmology 2003;18:2-10.
  59. Dupps WJ, Jr., Roberts CJ. Corneal biomechanics: a decade later. Journal of cataract and refractive surgery 2014;40:857.
  60. Esporcatte LPG, Salomao MQ, Lopes BT, et al. Biomechanical diagnostics of the cornea. Eye Vis (Lond) 2020;7:9.
  61. Ferreira-Mendes J, Lopes BT, Faria-Correia F, Salomão MQ, Rodrigues-Barros S, Ambrósio Jr R. Enhanced ectasia detection using corneal tomography and biomechanics. American journal of ophthalmology 2019;197:7-16.
  62. Ambrosio R, Jr., Lopes BT, Faria-Correia F, et al. Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection. Journal of refractive surgery (Thorofare, NJ : 1995) 2017;33:434-43.
  63. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 2005;31:156-62.
  64. Pinero DP, Alcon N. In vivo characterization of corneal biomechanics. Journal of cataract and refractive surgery 2014;40:870-87.
  65. Roberts CJ. Concepts and misconceptions in corneal biomechanics. Journal of cataract and refractive surgery 2014;40:862-9.
  66. Fontes BM, Ambrosio R, Jr., Alonso RS, Jardim D, Velarde GC, Nose W. Corneal biomechanical metrics in eyes with refraction of -19.00 to +9.00 D in healthy Brazilian patients. J Refract Surg 2008;24:941-5.
  67. Ambrósio Jr R, Ramos I, Luz A, et al. Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties. Revista Brasileira de Oftalmologia 2013;72:99-102.
  68. Roberts CJ, Mahmoud AM, Bons JP, et al. Introduction of two novel stiffness parameters and interpretation of air Puff–Induced biomechanical deformation parameters with a dynamic scheimpflug analyzer. Journal of Refractive Surgery 2017;33:266-73.
  69. Vinciguerra R, Ambròsio R, Elsheikh A, et al. Analysis of corneal biomechanics using ultra high-speed Scheimpflug imaging to distinguish normal from keratoconic patients. Investigative Ophthalmology & Visual Science 2015;56:1130.
  70. Lopes BT, Ramos IdC, Salomão MQ, Canedo ALC, Ambrósio Jr R. Perfil paquimétrico horizontal para a detecção do ceratocone. Rev Bras Oftalmol 2015;74:382-5.
  71. Vinciguerra R, Ambrosio R, Jr., Elsheikh A, et al. Detection of Keratoconus With a New Biomechanical Index. Journal of refractive surgery (Thorofare, NJ : 1995) 2016;32:803-10.
  72. Maeda N. Clinical applications of wavefront aberrometry - a review. Clin Exp Ophthalmol 2009;37:118-29.
  73. Colak HN, Kantarci FA, Yildirim A, et al. Comparison of corneal topographic measurements and high order aberrations in keratoconus and normal eyes. Contact Lens and Anterior Eye 2016;39:380-4.
  74. Jafri B, Li X, Yang H, Rabinowitz YS. Higher order wavefront aberrations and topography in early and suspected keratoconus. J Refract Surg 2007;23:774-81.
  75. Naderan M, Jahanrad A, Farjadnia M. Ocular, corneal, and internal aberrations in eyes with keratoconus, forme fruste keratoconus, and healthy eyes. Int Ophthalmol 2018;38:1565-73.
  76. Ambrosio Jr R. Integration of Corneral Topography and Wavefront. Review of Refractive Surgery 2004:1-4.
  77. Schumacher S, Seiler T, Cummings A, Maus M, Mrochen M. Optical ray tracing-guided laser in situ keratomileusis for moderate to high myopic astigmatism. J Cataract Refract Surg 2012;38:28-34.
  78. Mrochen M, Bueeler M, Donitzky C, Seiler T. Optical ray tracing for the calculation of optimized corneal ablation profiles in refractive treatment planning. J Refract Surg 2008;24:S446-51.
  79. Faria-Correia F, Ramos I, Lopes B, Monteiro T, Franqueira N, Ambrosio R, Jr. Comparison of Dysfunctional Lens Index and Scheimpflug Lens Densitometry in the Evaluation of Age-Related Nuclear Cataracts. J Refract Surg 2016;32:244-8.
  80. Lee AC, Qazi MA, Pepose JS. Biometry and intraocular lens power calculation. Current opinion in ophthalmology 2008;19:13-7.
  81. Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand 2007;85:472-85.
  82. Bozorg S, Pineda R. Cataract and keratoconus: minimizing complications in intraocular lens calculations. Semin Ophthalmol 2014;29:376-9.
  83. Ernst BJ, Hsu HY. Keratoconus association with axial myopia: a prospective biometric study. Eye Contact Lens 2011;37:2-5.
  84. Jian W, Shen Y, Chen Y, Tian M, Zhou X. Ocular dimensions of the Chinese adolescents with keratoconus. BMC ophthalmology 2018;18:43.
  85. Almorin-Fernandez-Vigo I, Sanchez-Guillen I, Fernandez-Vigo JI, et al. Normative Pentacam anterior and posterior corneal elevation measurements: effects of age, sex, axial length and white-to-white. Int Ophthalmol 2019;39:1955-63.
  86. Sedaghat MR, Askarizadeh F, Narooie-Noori F, Rakhshandadi T, Ostadi-Moghadam H, Rajabi S. Comparative evaluation of tomographic and biometric characteristics in bilateral keratoconus patients with unilateral corneal Vogt's striae: a contralateral eye study. Clin Ophthalmol 2018;12:1383-90.
  87. Kato N, Toda I, Hori-Komai Y, Sakai C, Arai H, Tsubota K. Phakic intraocular lens for keratoconus. Ophthalmology 2011;118:605- e2.
  88. Belin MW, Ambrosio R, Jr. Corneal ectasia risk score: statistical validity and clinical relevance. J Refract Surg 2010;26:238-40.
  89. Bao F, Geraghty B, Wang Q, Elsheikh A. Consideration of corneal biomechanics in the diagnosis and management of keratoconus: is it important? Eye and vision 2016;3:18.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.