Highlights of Ophthalmology

Register      Login

VOLUME 44 , ISSUE 3ENG ( Jun-2016, 2016 ) > List of Articles

Updates in Central Serous Chorioretinopathy

Michal Schaap-Fogler, Rita Ehrlich

Citation Information : Schaap-Fogler M, Ehrlich R. Updates in Central Serous Chorioretinopathy. 2016; 44 (3ENG):9-20.

DOI: 10.5005/highlights-44-3-9

Published Online: 29-01-2021

Copyright Statement:  Copyright © 2016; Jaypee Brothers Medical Publishers (P) Ltd.


Central serous chorioretinopathy (CSCR) is considered a benign, self-limiting disease. However, as many as third of the patients have recurrent episodes or chronic disease that may cause significant functional impairment. New diagnostic tools and new treatment modalities are emerging in order to improve the functional outcomes of these patients. Spectral domain optical coherence tomography (SD-OCT) has the ability to image individual layers of the retina and choroid. SD-OCT images in CSCR patients have demonstrated increased subfoveal thickness measurements, high reflective deposits in areas of subretinal precipitates and changes in the Retinal pigment epithelium layers of the asymptomatic eyes of patients with supposedly unilateral CSCR. A positive correlation was found between the level of distribution to the layer of inner segment/outer segment junction of the photoreceptors and the visual impairment. Fundus autofluoresence images show a wide variety during different stages of the disease in CSCR patients. Minimal abnormalities during the early stages are followed by hyperautofluoresence in the detached area in later stages, often in a manner of inferior gravitation and at the borders of the detachments. The chronic phase is characterized by varying degrees of atrophy and areas of decreased autofluorescence surrounding areas of chronic leaks. These changes help differentiate an active disease from an inactive state. Multifocal electroretinography (mfERG) has the ability to demonstrate a persistent depression despite the resolution of subretinal detachments. It is therefore being investigated as a follow up tool for patients with chronic CSCR. An excellent correlation was found between changes in mfERG and visual function. Macular microperimetry, measuring retinal sensitivity within the central visual field, is intended to compensate for the underestimation of visual impairment in patients with macular diseases. Reduced retinal sensitivity was found in areas of previous subretinal fluids in CSCR patients. The device can also serve as a follow up tool in these patients. Regarding treatment in CSCR patients, focal argon laser photocoagulation treatment may be applied to small extrafoveal leaks. However, the main purpose of this treatment is to shorten disease duration, with no advantage over observation regarding final visual outcome, rate of progression to chronic CSCR or number of recurrences. Photodynamic therapy (PDT) with verteporfin has been shown to completely resolve serous detachment in 60%-80% of patients and to have a partial affect in the remaining patients. Reduced-fluence treatment is replacing fullfluence therapy in order to minimize side effects with no accompanying reduced effectiveness. Regarding newer treatment modalities, intravitreal injections of anti-vascular endothelial growth factor agents have a limited effect in patients with CSCR. Recent reports have not demonstrated an advantage for this treatment in regards to anatomic and functional outcome. Micropulse diode laser was not proven to be safer or more effective than argon laser or PDT. In conclusion, imaging is evolving rapidly while the clinical implications of these new imaging modalities are less clear. Large randomized trials investigating different treatment modalities are still lacking.

PDF Share
  1. Von Graefe A. Kurzere Abhandlungen. Notizen und casaistische Mitheilungen vermischten Inhalts: VI (Ueber zentrale recidivirende Retinitis). Albrecht Von Graefes Arch Klin Exp Ophthalmol 1866; 12: 211-215
  2. Gass JD. Pathogenesis of disciform detachment of the neuroepithelium. Am J Ophthalmol 1967; 63: Suppl: 1-139 [PMID:6019308]
  3. Gilbert CM, Owens SL, Smith PD, Fine SL. Long-term follow- up of central serous chorioretinopathy. Br J Ophthalmol 1984; 68: 815-820 [PMID: 6541945 DOI: 10.1136/bjo.68.11.815]
  4. Spitznas M. Pathogenesis of central serous retinopathy: a new working hypothesis. Graefes Arch Clin Exp Ophthalmol 1986; 224: 321-324 [PMID: 3710187 DOI: 10.1007/BF02150023]
  5. Negi A, Marmor MF. Experimental serous retinal detachment and focal pigment epithelial damage. Arch Ophthalmol 1984; 102: 445-449 [PMID: 6703994 DOI: 10.1001/archopht. 1984.01040030359038]
  6. Marmor MF. New hypotheses on the pathogenesis and treatment of serous retinal detachment. Graefes Arch Clin Exp Ophthalmol 1988; 226: 548-552 [PMID: 3209082 DOI: 10.1007/BF02169203]
  7. Gass JDM. Specific diseases causing disciform macular detachment. Stereoscopic Atlas of Macular Diseases 1997; 1: 52-70
  8. Gass JDM. Pathogenesis of disciform detachment of the Neuroepithelium: I. General concepts and classifications. Am J Ophthalmol 1967; 63: 573-585 [PMID: 6019308]
  9. Gass JDM. Pathogenesis of disciform detachment of the neuroepithelium: IV. Fluorescein angiographic study of senile disciform macular degeneration. Am J Ophthalmol 1967;63: 645-659
  10. Gass JDM. Pathogenesis of disciform detachment of the neuroepithelium: V. Disciform macular detachment secondary to focal choroiditis. Am J Ophthalmol 1967; 63: 661-687
  11. Ryan SJ. Central serous chorioretinopathy. Retina 3rd ed. St Louis: Mosby, 2001: 1153-1181
  12. Guyer DR, Yannuzzi LA, Slakter JS, Sorenson JA, Ho A, Orlock D. Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch Ophthalmol 1994; 112: 1057-1062 [PMID: 8053819 DOI: 10.1001/archopht. 1994.01090200063023]
  13. Prünte C, Flammer J. Choroidal capillary and venous congestion in central serous chorioretinopathy. Am J Ophthalmol 1996; 121: 26-34 [PMID: 8554078]
  14. Regatieri CV, Branchini L, Fujimoto JG, Duker JS. Choroidal imaging using spectraldomain optical coherence tomography. Retina 2012; 32: 865-876 [PMID: 22487582 DOI: 10.1097/IAE.0b013e318251a3a8]
  15. Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 2009; 29: 1469-1473 [PMID: 19898183 DOI: 10.1097/IAE.0b013e3181be0a83]
  16. Kim SW, Oh J, Kwon SS, Yoo J, Huh K. Comparison of choroidal thickness among patients with healthy eyes, early age-related maculopathy, neovascular age-related macular degeneration, central serous chorioretinopathy, and polypoidal choroidal vasculopathy. Retina 2011; 31: 1904-1911 [PMID:21878855 DOI: 10.1097/IAE.0b013e31821801c5]
  17. Kim YT, Kang SW, Bai KH. Choroidal thickness in both eyes of patients with unilaterally active central serous chorioretinopathy. Eye (Lond) 2011; 25: 1635- 1640 [PMID: 22020172 DOI: 10.1038/eye.2011.258]
  18. Matsumoto H, Sato T, Kishi S. Outer nuclear layer thickness at the fovea determines visual outcomes in resolved central serous chorioretinopathy. Am J Ophthalmol 2009; 148:105-110.e1 [PMID: 19327740 DOI: 10.1016/j.ajo.2009.01.018]
  19. Matsumoto H, Kishi S, Otani T, Sato T. Elongation of photoreceptor outer segment in central serous chorioretinopathy. Am J Ophthalmol 2008; 145: 162-168 [PMID: 18028861 DOI:10.1016/j.ajo.2007.08.024]
  20. Kon Y, Iida T, Maruko I, Saito M. The optical coherence tomography ophthalmoscope for examination of central serous chorioretinopathy with precipitates. Retina 2008; 28: 864-869[PMID: 18536604 DOI: 10.1097/IAE.0b013e3181669795]
  21. Maruko I, Iida T, Ojima A, Sekiryu T. Subretinal dot-like precipitates and yellow material in central serous chorioretinopathy. Retina 2011; 31: 759-765 [PMID: 21052035]
  22. Brandl C, Helbig H, Gamulescu MA. Choroidal thickness measurements during central serous chorioretinopathy treatment. Int Ophthalmol 2014; 34: 7-13 [PMID: 23572440 DOI:10.1007/s10792-013-9774-y]
  23. Gupta P, Gupta V, Dogra MR, Singh R, Gupta A. Morphological changes in the retinal pigment epithelium on spectraldomain OCT in the unaffected eyes with idiopathic central serous chorioretinopathy. Int Ophthalmol 2010; 30: 175- 181[PMID: 19183854 DOI: 10.1007/s10792-009-9302-2]
  24. Oh J, Smiddy WE, Flynn HW, Gregori G, Lujan B. Photoreceptor inner/outer segment defect imaging by spectral domain OCT and visual prognosis after macular hole surgery. Invest Ophthalmol Vis Sci 2010; 51: 1651-1658 [PMID: 19850825]
  25. Oishi A, Otani A, Sasahara M, Kojima H, Nakamura H, Kurimoto M, Yoshimura N. Photoreceptor integrity and visual acuity in cystoid macular oedema associated with retinitis pigmentosa. Eye (Lond) 2009; 23: 1411-1416 [PMID:18724276 DOI: 10.1038/eye.2008.266]
  26. Kim HJ, Kang JW, Chung H, Kim HC. Correlation of foveal photoreceptor integrity with visual outcome in idiopathic epiretinal membrane. Curr Eye Res 2014; 39: 626-633 [PMID:24401121 DOI: 10.3109/02713683.2013.860990]
  27. Reznicek L, Cserhati S, Seidensticker F, Liegl R, Kampik A, Ulbig M, Neubauer AS, Kernt M. Functional and morphological changes in diabetic macular edema over the course of antivascular endothelial growth factor treatment. Acta Ophthalmol 2013; 91: e529-e536 [PMID: 23647578 DOI: 10.1111/aos.12153]
  28. Kim SW, Oh J, Huh K. Correlations among various functional and morphological tests in resolved central serous chorioretinopathy. Br J Ophthalmol 2012; 96: 350-355 [PMID:21617156 DOI: 10.1136/bjo.2011.204503]
  29. Ojima Y, Hangai M, Sasahara M, Gotoh N, Inoue R, Yasuno Y, Makita S, Yatagai T, Tsujikawa A, Yoshimura N. Threedimensional imaging of the foveal photoreceptor layer in central serous chorioretinopathy using high-speed optical coherence tomography. Ophthalmology 2007; 114: 2197-2207[PMID: 17507096 DOI: 10.1016/j.ophtha.2007.02.015]
  30. Piccolino FC, de la Longrais RR, Ravera G, Eandi CM, Ventre L, Abdollahi A, Manea M. The foveal photoreceptor layer and visual acuity loss in central serous chorioretinopathy. Am J Ophthalmol 2005; 139: 87-99 [PMID: 15652832 DOI:10.1016/j.ajo.2004.08.037]
  31. Yalcinbayir O, Gelisken O, Akova-Budak B, Ozkaya G, Gorkem Cevik S, Yucel AA. Correlation of spectral domain optical coherence tomography findings and visual acuity in central serous chorioretinopathy. Retina 2014; 34: 705-712[PMID: 24100708]
  32. Ferrara D, Mohler KJ, Waheed N, Adhi M, Liu JJ, Grulkowski I, Kraus MF, Baumal C, Hornegger J, Fujimoto JG, Duker JS. En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy. Ophthalmology 2014; 121: 719-726 [PMID: 24289918 DOI: 10.1016/j.ophtha.2013.10.014]
  33. Jirarattanasopa P, Ooto S, Tsujikawa A, Yamashiro K, Hangai M, Hirata M, Matsumoto A, Yoshimura N. Assessment of macular choroidal thickness by optical coherence tomography and angiographic changes in central serous chorioretinopathy. Ophthalmology 2012; 119: 1666-1678 [PMID:22521082 DOI: 10.1016/j.ophtha.2012.02.021]
  34. Spaide R. Autofluorescence from the outer retina and subretinal space: hypothesis and review. Retina 2008; 28: 5-35 [PMID: 18185134 DOI: 10.1097/IAE.0b013e318158eca4]
  35. Spaide RF, Klancnik JM. Fundus autofluorescence and central serous chorioretinopathy. Ophthalmology 2005; 112:825-833 [PMID: 15878062 DOI: 10.1016/j.ophtha.2005.01.003]
  36. von Rückmann A, Fitzke FW, Fan J, Halfyard A, Bird AC. Abnormalities of fundus autofluorescence in central serous retinopathy. Am J Ophthalmol 2002; 133: 780- 786 [PMID:12036669 DOI: 10.1016/S0002-9394(02)01428-9]
  37. Matsumoto H, Kishi S, Sato T, Mukai R. Fundus autofluorescence of elongated photoreceptor outer segments in central serous chorioretinopathy. Am J Ophthalmol 2011; 151:617-623.e1 [PMID: 21257153 DOI: 10.1016/j.ajo.2010.09.031]
  38. Imamura Y, Fujiwara T, Spaide RF. Fundus autofluorescence and visual acuity in central serous chorioretinopathy. Ophthalmology 2011; 118: 700-705 [PMID: 21055816 DOI: 10.1016/j.ophtha.2010.08.017]
  39. Marmor MF, Tan F. Central serous chorioretinopathy: bilateral multifocal electroretinographic abnormalities. Arch Ophthalmol 1999; 117: 184-188 [DOI: 10.1001/archopht.117.2.184]
  40. Moschos M, Brouzas D, Koutsandrea C, Stefanos B, Loukianou H, Papantonis F, Moschos M. Assessment of central serous chorioretinopathy by optical coherence tomography and multifocal electroretinography. Ophthalmologica 2007;221: 292- 298 [PMID: 17728550 DOI: 10.1159/000104758]
  41. Vajaranant TS, Szlyk JP, Fishman GA, Gieser JP, Seiple W. Localized retinal dysfunction in central serous chorioretinopathy as measured using the multifocal electroretinogram. Ophthalmology 2002; 109: 1243-1250 [PMID: 12093645 DOI:10.1016/S0161-6420(02)01065-5]
  42. Yip YW, Ngai JW, Fok AC, Lai RY, Li H, Lam DS, Lai TY. Correlation between functional and anatomical assessments by multifocal electroretinography and optical coherence tomography in central serous chorioretinopathy. Doc Ophthalmol 2010; 120: 193-200 [PMID: 20066472 DOI: 10.1007/s10633-010-9213-6]
  43. Lai TY, Lai RY, Ngai JW, Chan WM, Li H, Lam DS. First and second-order kernel multifocal electroretinography abnormalities in acute central serous chorioretinopathy. Doc Ophthalmol 2008; 116: 29-40 [PMID: 17762944 DOI: 10.1007/s10633-007-9075-8]
  44. McClure ME, Hart PM, Jackson AJ, Stevenson MR, Chakravarthy U. Macular degeneration: do conventional measurements of impaired visual function equate with visual disability? Br J Ophthalmol 2000; 84: 244-250 [PMID: 10684832 DOI:10.1136/bjo.84.3.244]
  45. West SK, Munoz B, Rubin GS, Schein OD, Bandeen-Roche K, Zeger S, German S, Fried LP. Function and visual impairment in a population-based study of older adults. The SEE project. Salisbury Eye Evaluation. Invest Ophthalmol Vis Sci 1997; 38: 72-82 [PMID: 9008632]
  46. Mangione CM, Gutierrez PR, Lowe G, Orav EJ, Seddon JM. Influence of agerelated maculopathy on visual functioning and health-related quality of life. Am J Ophthalmol 1999; 128:45-53 [PMID: 10482093 DOI: 10.1016/S0002- 9394(99)00169-5]
  47. Scott IU, Schein OD, West S, Bandeen-Roche K, Enger C, Folstein MF. Functional status and quality of life measurement among ophthalmic patients. Arch Ophthalmol 1994; 112: 329-335 [PMID: 8129657 DOI: 10.1001/archopht.1994.01090150059023]
  48. Remky A, Lichtenberg K, Elsner AE, Arend O. Short wavelength automated perimetry in age related maculopathy. Br J Ophthalmol 2001; 85: 1432-1436 [PMID: 11734515 DOI:10.1136/bjo.85.12.1432]
  49. Hazel CA, Petre KL, Armstrong RA, Benson MT, Frost NA. Visual function and subjective quality of life compared in subjects with acquired macular disease. Invest Ophthalmol Vis Sci 2000; 41: 1309-1315 [PMID: 10798645]
  50. Roisman L, Ribeiro JC, Fechine FV, Lavinsky D, Moraes N, Campos M, Farah ME. Does microperimetry have a prognostic value in central serous chorioretinopathy? Retina 2014;34: 713-718 [PMID: 23975001]
  51. Oh J, Kim SW, Kwon SS, Oh IK, Huh K. Correlation of fundus autofluorescence gray values with vision and microperimetry in resolved central serous chorioretinopathy. Invest Ophthalmol Vis Sci 2012; 53: 179-184 [PMID: 22159007 DOI: 10.1167/iovs.11-8704]
  52. Ojima Y, Tsujikawa A, Hangai M, Nakanishi H, Inoue R, Sakamoto A, Yoshimura N. Retinal sensitivity measured with the micro perimeter 1 after resolution of central serous chorioretinopathy. Am J Ophthalmol 2008; 146: 77-84 [PMID:18405876 DOI: 10.1016/j.ajo.2008.02.016]
  53. Nicholson B, Noble J, Forooghian F, Meyerle C. Central serous chorioretinopathy: update on pathophysiology and treatment. Surv Ophthalmol 2013; 58: 103-126 [PMID:23410821 DOI: 10.1016/j.survophthal.2012.07.004]
  54. Robertson DM, Ilstrup D. Direct, indirect, and sham laser photocoagulation in the management of central serous chorioretinopathy. Am J Ophthalmol 1983; 95: 457- 466 [PMID: 6682293]
  55. Leaver P, Williams C. Argon laser photocoagulation in the treatment of central serous retinopathy. Br J Ophthalmol 1979; 63: 674-677 [PMID: 574397 DOI: 10.1136/bjo.63.10.674]
  56. Ficker L, Vafidis G, While A, Leaver P. Long-term follow-up of a prospective trial of argon laser photocoagulation in the treatment of central serous retinopathy. Br J Ophthalmol 1988;72: 829-834 [PMID: 3061449 DOI: 10.1136/bjo.72.11.829]
  57. Yannuzzi LA, Slakter JS, Gross NE, Spaide RF, Costa D, Huang SJ, Klancnik JM, Aizman A. Indocyanine green angiography-guided photodynamic therapy for treatment of chronic central serous chorioretinopathy: a pilot study. Retina 2003; 23: 288-298 [PMID: 12824827 DOI: 10.1097/0000 6982-200306000-00002]
  58. Cardillo Piccolino F, Eandi CM, Ventre L, Rigault de la Longrais RC, Grignolo FM. Photodynamic therapy for chronic central serous chorioretinopathy. Retina 2003; 23: 752-763 [PMID: 14707823 DOI: 10.1097/00006982-200312000-00002]
  59. Chan W-M, Lam DSC, Lai TYY, Tam BSM, Liu DTL, Chan CKM. Choroidal vascular remodelling in central serous chorioretinopathy after indocyanine green guided photodynamic therapy with verteporfin: a novel treatment at the primary disease level. Br J Ophthalmol 2003; 87: 1453-1458 [DOI: 10.1136/bjo.87.12.1453]
  60. Taban M, Boyer DS, Thomas EL, Taban M. Chronic central serous chorioretinopathy: photodynamic therapy. Am J Ophthalmol 2004; 137: 1073-1080 [PMID: 15183792 DOI: 10.1016/j.ajo.2004.01.043]
  61. Gemenetzi M, De Salvo G, Lotery AJ. Central serous chorioretinopathy: an update on pathogenesis and treatment. Eye (Lond) 2010; 24: 1743-1756 [PMID: 20930852 DOI: 10.1038/eye.2010.130]
  62. Lee TG, Kim JE. Photodynamic therapy for steroid-associated central serous chorioretinopathy. Br J Ophthalmol 2011; 95: 518-523 [PMID: 20679080 DOI: 10.1136/bjo.2010.181149]
  63. Chan WM, Lai TY, Lai RY, Liu DT, Lam DS. Half-dose verteporfin photodynamic therapy for acute central serous chorioretinopathy: one-year results of a randomized controlled trial. Ophthalmology 2008; 115: 1756-1765 [PMID: 18538401 DOI: 10.1016/j.ophtha.2008.04.014]
  64. Wu ZHY, Lai RYK, Yip YWY, Chan WM, Lam DSC, Lai TYY. Improvement in multifocal electroretinography after halfdose verteporfin photodynamic therapy for central serous chorioretinopathy: a randomized placebo-controlled trial. Retina 2011; 31: 1378-1386 [DOI: 10.1097/FTD.0b013e31820beb02]
  65. Ehrlich R, Mawer NP, Mody CH, Brand CS, Squirrell D. Visual function following photodynamic therapy for central serous chorioretinopathy: a comparison of automated macular microperimetry versus best-corrected visual acuity. Clin Experiment Ophthalmol 2012; 40: e32-e39 [PMID: 21745265 DOI: 10.1111/j.1442- 9071.2011.02654.x]
  66. Fujita K, Yuzawa M, Mori R. Retinal sensitivity after photodynamic therapy with halfdose verteporfin for chronic central serous chorioretinopathy: short-term results. Retina 2011; 31: 772-778 [PMID: 20890236 DOI: 10.1097/IAE.0b013e3181f049d3]
  67. Senturk F, Karacorlu M, Ozdemir H, Karacorlu SA, Uysal O. Microperimetric changes after photodynamic therapy for central serous chorioretinopathy. Am J Ophthalmol 2011; 151: 303-9.e1 [PMID: 21168824 DOI: 10.1016/j.ajo.2010.08.019]
  68. Zhao MW, Zhou P, Xiao HX, Lv YS, Li CA, Liu GD, Li XX. Photodynamic therapy for acute central serous chorioretinopathy: the safe effective lowest dose of verteporfin. Retina 2009; 29: 1155-1161 [PMID: 19629018 DOI: 10.1097/IAE.0b013e3181a6c028]
  69. Lim JW, Kang SW, Kim YT, Chung SE, Lee SW. Comparative study of patients with central serous chorioretinopathy undergoing focal laser photocoagulation or photodynamic therapy. Br J Ophthalmol 2011; 95: 514-517 [PMID: 20644214 DOI: 10.1136/bjo.2010.182121]
  70. Inoue R, Sawa M, Tsujikawa M, Gomi F. Association between the efficacy of photodynamic therapy and indocyanine green angiography findings for central serous chorioretinopathy. Am J Ophthalmol 2010; 149: 441-6.e1-441-6.e2[PMID: 20172070 DOI: 10.1016/j.ajo.2009.10.011]
  71. Kim KS, Lee WK, Lee SB. Half-dose photodynamic therapy targeting the leakage point on the fluorescein angiography in acute central serous chorioretinopathy: a pilot study. Am J Ophthalmol 2014; 157: 366-373.e1 [PMID: 24184226 DOI:10.1016/j.ajo.2013.10.013]
  72. Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP, Schneider S. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 2006; 355: 1432-1444 [PMID: 17021319 DOI: 10.1056/NEJMoa062655]
  73. Chang TS, Bressler NM, Fine JT, Dolan CM, Ward J, Klesert TR. Improved visionrelated function after ranibizumab treatment of neovascular age-related macular degeneration: results of a randomized clinical trial. Arch Ophthalmol 2007; 125: 1460-1469 [PMID: 17998507 DOI: 10.1001/archopht. 125.11.1460]
  74. Elman MJ, Aiello LP, Beck RW, Bressler NM, Bressler SB, Edwards AR, Ferris FL, Friedman SM, Glassman AR, Miller KM, Scott IU, Stockdale CR, Sun JK. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 2010; 117: 1064-1077.e35 [PMID: 20427088 DOI: 10.1016/j.ophtha.2010.02.031]
  75. Lim JW, Kim MU. The efficacy of intravitreal bevacizumab for idiopathic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 2011; 249: 969-974 [PMID: 21140161 DOI:10.1007/s00417-010-1581-9
  76. Artunay O, Yuzbasioglu E, Rasier R, Sengul A, Bahcecioglu H. Intravitreal bevacizumab in treatment of idiopathic persistent central serous chorioretinopathy: a prospective, controlled clinical study. Curr Eye Res 2010; 35: 91-98 [PMID: 20136418 DOI: 10.3109/02713680903428306]
  77. Chhablani JK, Narayanan R. Intravitreal bevacizumab injection for central serous chorioretinopathy. Retina 2010; 30:1323-1324; author reply 1324 [PMID: 20661171 DOI: 10.1097/IAE.0b013e3181e46b09]
  78. Inoue M, Kadonosono K, Watanabe Y, Kobayashi S, Yamane S, Arakawa A. Results of one-year follow-up examinations after intravitreal bevacizumab administration for chronic central serous chorioretinopathy. Ophthalmologica 2011; 225:37-40 [PMID: 20693820 DOI: 10.1159/000314709]
  79. Lee ST, Adelman RA. The treatment of recurrent central serous chorioretinopathy with intravitreal bevacizumab. J Ocul Pharmacol Ther 2011; 27: 611-614 [PMID: 21810026 DOI: 10.1089/jop.2011.0045]
  80. Alomran MS. Intravitreal Bevacizumab for the Treatment of Central Serous Chorioretinopathy. Ophthalmic Surg Lasers Imaging 2010 Apr 2; Epub ahead of print [PMID: 20429499]
  81. Lim SJ, Roh MI, Kwon OW. Intravitreal bevacizumab injection for central serous chorioretinopathy. Retina 2010; 30: 100-106 [PMID: 20010322 DOI: 10.1097/IAE.0b013e3181bcf0b4]
  82. Schaal KB, Hoeh AE, Scheuerle A, Schuett F, Dithmar S. Intravitreal bevacizumab for treatment of chronic central serous chorioretinopathy. Eur J Ophthalmol 2009; 19: 613-617 [PMID: 19551677]
  83. Huang WC, Chen WL, Tsai YY, Chiang CC, Lin JM. Intravitreal bevacizumab for treatment of chronic central serous chorioretinopathy. Eye (Lond) 2009; 23: 488- 489 [PMID: 18344956 DOI: 10.1038/eye.2008.55]
  84. Torres-Soriano ME, García-Aguirre G, Kon-Jara V, Ustariz- Gonzáles O, Abraham- Marín M, Ober MD, Quiroz-Mercado H. A pilot study of intravitreal bevacizumab for the treatment of central serous chorioretinopathy (case reports). Graefes Arch Clin Exp Ophthalmol 2008; 246: 1235-1239 [PMID:18523796 DOI: 10.1007/s00417- 008-0856-x]
  85. Bae SH, Heo JW, Kim C, Kim TW, Lee JY, Song SJ, Park TK, Moon SW, Chung H. A randomized pilot study of low-fluence photodynamic therapy versus intravitreal ranibizumab for chronic central serous chorioretinopathy. Am J Ophthalmol 2011; 152: 784-792.e2 [PMID: 21742303 DOI: 10.1016/j.ajo.2011.04.008]
  86. Chung YR, Seo EJ, Lew HM, Lee KH. Lack of positive effect of intravitreal bevacizumab in central serous chorioretinopathy: meta-analysis and review. Eye (Lond) 2013; 27:1339-1346 [PMID: 24202051 DOI: 10.1038/eye.2013.236]
  87. Brancato R, Scialdone A, Pece A, Coscas G, Binaghi M. Eight-year follow-up of central serous chorioretinopathy with and without laser treatment. Graefes Arch Clin Exp Ophthalmol 1987; 225: 166-168 [PMID: 3609756 DOI: 10.1007/BF02175443]
  88. Verma L, Sinha R, Venkatesh P, Tewari HK. Comparative evaluation of diode laser versus argon laser photocoagulation in patients with central serous retinopathy: a pilot, randomized controlled trial [ISRCTN84128484]. BMC Ophthalmol 2004; 4: 15 [PMID: 15516262 DOI: 10.1186/1471-2415-4-15]
  89. Chen SN, Hwang JF, Tseng LF, Lin CJ. Subthreshold diode micropulse photocoagulation for the treatment of chronic central serous chorioretinopathy with juxtafoveal leakage. Ophthalmology 2008; 115: 2229-2234 [PMID: 19041477 DOI: 10.1016/j.ophtha.2008.08.026]
  90. Bouzas EA, Scott MH, Mastorakos G, Chrousos GP, Kaiser- Kupfer MI. Central serous chorioretinopathy in endogenous hypercortisolism. Arch Ophthalmol 1993; 111: 1229-1233 [PMID:8363466 DOI: 10.1001/archopht.1993.01090090081024]
  91. Jampol LM, Weinreb R, Yannuzzi L. Involvement of corticosteroids and catecholamines in the pathogenesis of central serous chorioretinopathy: a rationale for new treatment strategies. Ophthalmology 2002; 109: 1765-1766 [PMID: 12359592 DOI: 10.1016/S0161-6420(02)01303-9]
  92. Garg SP, Dada T, Talwar D, Biswas NR. Endogenous cortisol profile in patients with central serous chorioretinopathy. Br J Ophthalmol 1997; 81: 962-964 [PMID: 9505819 DOI: 10.1136/bjo.81.11.962]
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.